RESISTÊNCIA À SECA EM CULTIVARES DE TRIGO: QUALIDADE E RENDIMENTO DOS GRÂOS E MEDIÇÕES FISIOLÓGICAS

Antonio Evaldo Klar
Irene Andrade Meneses Denadai
Departamento de Engenharia Rural - Faculdade de Ciências Agronômicas - UNESP
Fone:(014)821-3883; Fax:(014)821-3438 - CP: 237 - CEP: 18603 970 - Botucatu, SP

1. RESUMO

Os estudos foram desenvolvidos no Departamento de Engenharia Rural da Faculdade de Ciências Agronômicas do Câmpus de Botucatu - UNESP, num solo Latossol Vermelho Amarelo - fase arenosa, com dois tratamentos de irrigação: um era irrigado todas as vezes em que o potencial de água no solo (Ψs) atingia cerca de -0,05 MPa e outro, quando chegava às imediações de -1,5 MPa, em condições de campo, usando-se o método de aspersão. Usaram-se nove cultivares já cultivados no Estado de São Paulo. Utilizando-se de parâmetros fisiológicos, como o potencial de água na folha e a resistência difusiva ao vapor d’água na folha, pode-se inferir que os cultivares Anahuac, IAC-21, IAC-5 e IAC-22 apresentaram características estomáticas de molde a mostrarem maior capacidade de evitar a seca que os demais. No entanto, estas medições não mostraram relações consistentes com a produtividade e outros parâmetros relacionados aos grãos. Os cultivares que mais se adaptaram à panificação são o Anahuac e o PAT-72247, respectivamente, com 12,80 e 12,83% de proteína nos grãos, se irrigados. Os demais apresentaram teores superiores aos recomendados, com proeminência para o IAC-17 (15,81%) e IAC-18 (15,47%), mesmo se irrigados. Todos os cultivares apresentaram teores de proteína elevados sob ciclos de seca, desde 15,25% (Anahuac) até 19,33% (IAC-5). A irrigação frequente aumentou os teores de umidade, de fibras e de amido, diminuiu o de proteína e de cinzas nos grãos, só não afetou o de matérias graxas.

UNITERMOS: potencial de água nas folhas, resistência difusiva ao vapor d’água nas folhas, porcentagem de proteína nos grãos.

1 - Aprovado no IX Congresso Nacional de Irrigação e Drenagem - Natal, 1990 e desenvolvido com o auxílio da FAPESP (Proc. 85/2909-4)
2 - Pesquisador do CNPq

2. ABSTRACT

Field studies were made at the Agricultural Engineering Department, FCA-UNESP, Botucatu, SP, in a Red Yellow Latossol - sandy phase soil. Two treatments were used: watered through sprinkler method when soil water potential reached -1.5 MPa, and -0.05 MPa, roughly. Nine cultivars were used in order to study the relationships among hydric physiological parameters, and those related to grain yield, and quality. Leaf water potential, and water vapour diffusive resistance measurements showed the ‘Anahuaç’, the ‘IAC-21’, the ‘IAC-5’, and ‘IAC-22’, as the most resistant to drought. Nevertheless, these measurements did not consistently correlate to grain yield and quality. The most adapted cultivars for bread manufacture were Anahuaç and PAT-72247, respectively, with 12.80 and 12.83% grain protein content, if frequently irrigated. The other cultivars presented higher protein content than recommendable for bread industry under both treatments, mainly under drying cycles. Frequent irrigation increased the moisture, fibre, and carbohydrate content, decreased the protein and ash content, and did not affect the lipid content in the grains.

KEYWORDS: leaf water potential, leaf water vapour diffusive resistance, % grain protein.

3. INTRODUÇÃO

O Brasil é um grande consumidor de trigo, destacando-se pela parcial dependência da importação. É um cereal básico, sendo cultivado desde a Argentina até a Finlândia, o que exige trabalhos intensos de seleção, visando a adaptação da cultura ao meio ambiente. No Brasil, o seu cultivo foi iniciado no Sul, disseminando-se depois a outros Estados, inclusive em áreas de cerrado. Trabalhos realizados em Minas Gerais indicam produtividades superiores a 5 t/ha sob irrigação (Silva, 1980). No Estado de São Paulo, inúmeros cultivares foram desenvolvidos pelo Instituto Agronômico de Campinas (Camargo, 1987; Camargo et al., 1987; Felicio et al., 1986), com aumentos sensíveis na produtividade de grãos. O Centro Nacional de Pesquisa do Trigo da Embrapa divulgou que no período 1980/84, a produtividade média brasileira foi 938 kg/ha e no período 1985/91, 1565 kg/ha (PETROFERTII, 1992).

A técnica da irrigação chega a aumentar a produtividade em mais de 200% (Klar et al., 1988), com lucros superiores a 60% do capital investido (Silva, 1980).
Trabalhando com o cultivar IAC-5, Klar et al. (1985) concluíram, através de medições fisiológicas, que as plantas de trigo têm condições de aumentar sua resistência à seca. Há que se realçar que o fenômeno da resistência à seca não foi definido fisiologicamente com segurança. No entanto, variações anatômicas, genéticas e fisiológicas, promovidas pelas plantas para evitar a desidratação, foram detectadas em plantas comerciais (Klar et al., 1978).

Levitt (1972) classificou as plantas em três categorias, com vistas à adaptação à seca: as que “toleram”, as que “evitam” e as que “escapam” à seca. As primeiras o fazem, através de intenso abajamento nos potenciais de água internos; as que “evitam”, usam mecanismos complexos de sobrevivência, como o fechamento dos estômatos, queda de folhas, engrossamento de paredes celulares, espessamento da cutícula, ajuste osmótico, etc.; mas mantendo elevados potenciais de água nas folhas; as últimas “fogem” da seca, completando o ciclo antes do advento de um período hídrico desfavorável. As culturas comerciais, como os cereais, pertencem, via de regra, à segunda categoria. Portanto, durante o crescimento, as plantas conseguem desenvolver mecanismos de adaptação ambiental mais ou menos consistentes, dependendo do cultivar, da espécie e até da própria planta.

Quando ocorrem déficits hídricos, as plantas procuram usar recursos que as tornem mais tolerantes a futuros ciclos de seca, é o que se denomina “endurecimento”. Este fenômeno é tão mais intenso, quanto mais severos e em maior número os ciclos de déficits hídricos, dentro dos limites da sobrevivência das plantas (Klar et al., 1985; Klar et al., 1978).

Métodos fisiológicos podem ser usados para encetar um programa de seleção de plantas resistentes à seca, como por exemplo, o potencial de água nas folhas, a resistência difusiva dos estômatos ao vapor da água, o teor relativo de água nas folhas, etc. No entanto, caso esta resistência seja detectada, deve-se saber se há correspondência com uma seleção envolvendo outros parâmetros da planta, como a produtividade dos grãos.

O principal escopo deste trabalho é, justamente, verificar se existe correlação entre a resistência fisiológica e a produtividade e qualidade dos grãos de trigo, usando-se nove cultivares de origens diferentes, inclusive um proveniente de regiões áridas do México. Pretende-se verificar, ainda, qual o comportamento destes frente à irrigação frequente e a ciclos de seca com o intuito de indicá-los para condições de solo e clima semelhantes às da Região de Botucatu-SP.

4. MATERIAIS E MÉTODOS

O ensaio foi instalado na Faculdade de Ciências Agronômicas da UNESP, Botucatu, SP, num solo Latossol Vermelho-Amarvelo - fase arenosa, cujas características físicas e químicas encontram-se nos Quadros 1 e 2.

Foram aplicados 2,5 t/ha de calcário dolomítico, 700 kg de – P e K da fórmula 4-14-8 por hectare e 200 kg/ha de sulfato de amônio em cobertura aos 30 dias. Foram desenvolvidos todos os tratamentos fitossanitários recomendados à cultura. A semeadura foi realizada manualmente em 3 de junho de 1989.
QUADRO 1 - Características físicas do solo

<table>
<thead>
<tr>
<th>Prof. (cm)</th>
<th>Granulometria</th>
<th>P. esp. (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Areia</td>
<td>Silte</td>
</tr>
<tr>
<td>0-30</td>
<td>46,4</td>
<td>23,8</td>
</tr>
<tr>
<td>30-60</td>
<td>45,4</td>
<td>24,4</td>
</tr>
</tbody>
</table>

QUADRO 2 - Análise química por volume de terra fina seca ao ar

<table>
<thead>
<tr>
<th>Prof. (cm)</th>
<th>pH</th>
<th>M.O</th>
<th>P</th>
<th>Miliequivalente/100 cm³ de terra</th>
<th>V (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(CaCl₂)</td>
<td>(cm)</td>
<td>resina</td>
<td>H⁺+Al³⁺</td>
<td>K⁺</td>
</tr>
<tr>
<td>0-30</td>
<td>5,2</td>
<td>1,84</td>
<td>2,03</td>
<td>3,4</td>
<td>0,08</td>
</tr>
<tr>
<td>30-60</td>
<td>5,5</td>
<td>1,59</td>
<td>2,03</td>
<td>2,5</td>
<td>0,09</td>
</tr>
</tbody>
</table>

S = soma de bases (Ca + Mg + K)
CTC = capacidade de troca de cations

Promoveu-se um teste de germinação com os nove cultivares utilizados: IAC-5 (90%), IAC-17 (95%), IAC-18 (93%), IAC-21 (94%), IAC-22 (95%), IAC-24 (80%), Alondra (94%), Anahuauc (80%) e PAT 72247 (96%).

As parcelas foram dimensionadas com 5 x 1,5 m² úteis e as linhas espaçadas de 0,20 m. A bordadura teve uma largura de 0,60 m de todos os lados. Uma parcela foi distanciada de outra de 1,00 m no sentido do comprimento e 0,60 m na largura. Utilizaram-se 3,5 g de sementes por metro linear.

O experimento foi delineado em blocos ao acaso, com dois tratamentos de irrigação: i - recebia água toda vez que o potencial matricial de água do solo (Ψs) atingisse valores próximos a -0,05 MPa na camada 0-30 cm; s - era irrigado só a Ψs próximos a -1,5 MPa, também na camada 0-30 cm.

O potencial matricial da água do solo era determinado com tensiómetros e através do teor de umidade pelo método gravimétrico padrão, em conjunto com a curva característica de água do solo (Fig. 1).

O tratamento irrigado frequentemente recebeu 13 irrigações num total de 314 mm, que adicionou das chuvas (17 mm - 4/6; 10 mm - 22/8; 29 mm - 31/8; 22 mm - 4/19; 14 mm - 20/9 e 24 mm - 29/9) atingiu 430 mm totais. O potencial de água do solo manteve-se sempre acima de -0,06 MPa no tratamento de irrigação frequente a 0-30 cm de profundidade. À profundidade de 30-60 cm, o valor de Ψs mais baixo encontrado foi -0,03 MPa, a 23/9.

No tratamento “seco”, ocorreram apenas duas irrigações: nos dias 27/7 e 12/8, quando o potencial matricial chegou a -1,5 MPa, e -1,25 MPa a 0-30 cm de profundidade, respectivamente. À profundidades maiores, em nenhuma ocasião o potencial matricial baixou além de -0,09 MPa. O total de água recebida por este tratamento foi 204 mm, dos quais apenas 88 mm, por irrigação.
Figura 01 - Curva característica de umidade do solo.
Com o intuito de auxiliar na medição da perda d’água da cultura, utilizou-se de um tanque “classe A”, localizado no centro do ensaio, ao lado de um pluviômetro. O tanque mostrou uma evaporação de 295,38 mm durante o ciclo, desde a germinação (11/6) até o dia 17/9.

As medições fisiológicas, neste trabalho, se consubstanciaram em determinar os potenciais de água por câmara de pressão e a difusividade ao vapor d’água das folhas, por porometria, no estádio do florescimento (Klar, 1988).

As outras medições desenvolvidas nas plantas foram a produtividade de grãos, os teores de proteína, de umidade, de cinzas, de fibras, de amido, de óleo nos grãos e de matéria seca da parte aérea.

5. RESULTADOS E DISCUSSÃO

5.1. Qualidade dos Grãos e Matéria Seca da Parte Aérea

No tratamento irrigado, sobressaiu-se o cultivar Anahuac no que tange à produtividade, 2913 kg/ha, que correspondem a um aumento de 210% quando comparado ao seco (938 kg/ha), conforme se pode verificar no Quadro 3.

No caso específico do cultivar Anahuac, a produtividade de grãos deve ter sido o escopo principal do programa de seleção mas, conforme se pode depreender dos dados, ele só apresenta esta variável em seu pleno apogeu, se receber irrigação compatível às suas necessidades. No entanto, esta eficiência na produção de grãos se contrapõe a perdas de outros valores, como a produção de matéria seca da parte aérea, quando este cultivar produziu somente 1,15 g por planta, em média, para o tratamento irrigado, apenas 45% do cultivar maior produtor de matéria seca, o IAC-22 com 2,54 g em média, também no tratamento irrigado (Quadro 4). O IAC-22, por sua vez, neste mesmo tratamento, produziu 73% da quantidade de grãos do Anahuac. Este é de porte baixo, característica que é conferida pelos gens Rht, que proporcionam maior produtividade de grãos em detrimento da parte vegetativa (Klar et al, 1988).

As plantas, como indivíduos, cultivares ou espécies têm cargas genéticas que as predisponem a diferentes eficiências de conversão fotorretróptica. Durante o crescimento, há incorporação de fitomassa nova, desigual conforme o genótipo e as condições ambientais, no que concerne não só à quantidade por unidade de área como também à qualidade produzida. Por exemplo, para se produzir proteína, necessita-se mais energia que para a produção de carboidratos, um aumento na produtividade de grãos pode ser conduzido em detrimento da matéria seca da parte aérea, de parte da porcentagem de proteína e outros compostos e com aumento da de carboidratos. Sempre há um custo energético diferente para cada um dos diferentes assimilados fotorretrópticos (Klar, 1988).

No caso do cultivar Anahuac, o tratamento irrigado apresentou, em média, 12,59% de proteína nos grãos, enquanto o seco mostrou valores em torno de 15,24%, portanto, com uma diferença de 21,05% (Quadro 3).

Como a finalidade da seleção deste cultivar era, principalmente, produtividade de grãos com um mínimo de fitomassa verde, ele atinge seu objetivo, desde que irrigado.
QUADRO 3 - Média dos valores de produtividade e teores de proteína, amido e óleo nos grãos dos tratamentos irrigados (i) e secos(s) para os nove cultivares

<table>
<thead>
<tr>
<th>Cultivares</th>
<th>Produtividade (kg/h)</th>
<th>Proteína (%)</th>
<th>Amido (%)</th>
<th>Oleo (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anahuac</td>
<td>2913</td>
<td>12,59</td>
<td>61,30</td>
<td>2,29</td>
</tr>
<tr>
<td>Anahuac</td>
<td>938</td>
<td>15,24</td>
<td>61,30</td>
<td>1,90</td>
</tr>
<tr>
<td>Alondra</td>
<td>2287</td>
<td>15,30</td>
<td>60,95</td>
<td>2,33</td>
</tr>
<tr>
<td>Alondra</td>
<td>835</td>
<td>18,44</td>
<td>58,35</td>
<td>2,05</td>
</tr>
<tr>
<td>Pat-72247</td>
<td>1800</td>
<td>17,83</td>
<td>63,85</td>
<td>2,27</td>
</tr>
<tr>
<td>Pat-72247</td>
<td>1400</td>
<td>16,88</td>
<td>61,75</td>
<td>2,11</td>
</tr>
<tr>
<td>IAC-5</td>
<td>1666</td>
<td>14,80</td>
<td>62,05</td>
<td>2,78</td>
</tr>
<tr>
<td>IAC-5</td>
<td>1056</td>
<td>19,33</td>
<td>60,45</td>
<td>2,25</td>
</tr>
<tr>
<td>IAC-17</td>
<td>1951</td>
<td>15,81</td>
<td>60,00</td>
<td>1,97</td>
</tr>
<tr>
<td>IAC-17</td>
<td>989</td>
<td>17,75</td>
<td>58,20</td>
<td>2,67</td>
</tr>
<tr>
<td>IAC-18</td>
<td>1692</td>
<td>15,47</td>
<td>60,35</td>
<td>2,42</td>
</tr>
<tr>
<td>IAC-18</td>
<td>1111</td>
<td>17,13</td>
<td>58,95</td>
<td>2,34</td>
</tr>
<tr>
<td>IAC-21</td>
<td>1504</td>
<td>14,81</td>
<td>62,00</td>
<td>2,72</td>
</tr>
<tr>
<td>IAC-21</td>
<td>1030</td>
<td>19,00</td>
<td>60,00</td>
<td>2,30</td>
</tr>
<tr>
<td>IAC-22</td>
<td>2117</td>
<td>13,81</td>
<td>63,45</td>
<td>2,46</td>
</tr>
<tr>
<td>IAC-22</td>
<td>733</td>
<td>16,21</td>
<td>60,60</td>
<td>2,41</td>
</tr>
<tr>
<td>IAC-24</td>
<td>2742</td>
<td>13,81</td>
<td>61,00</td>
<td>2,62</td>
</tr>
<tr>
<td>IAC-24</td>
<td>1155</td>
<td>16,94</td>
<td>58,35</td>
<td>2,40</td>
</tr>
<tr>
<td>Média</td>
<td>2085</td>
<td>14,38</td>
<td>61,66</td>
<td>2,42</td>
</tr>
<tr>
<td>Média</td>
<td>1087</td>
<td>17,54</td>
<td>59,88</td>
<td>2,27</td>
</tr>
<tr>
<td>Tratamento (dms)#</td>
<td>179</td>
<td>0,450</td>
<td>1,13</td>
<td>n.s.</td>
</tr>
<tr>
<td>Cultivar (dms)#</td>
<td>835</td>
<td>1,59</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>C.V.(conjunta)</td>
<td>3,83%</td>
<td>4,03%</td>
<td>2,66%</td>
<td>4,11%</td>
</tr>
<tr>
<td>F. (Tratamento)</td>
<td>5668**</td>
<td>218**</td>
<td>10,90**</td>
<td>1,97n.s.</td>
</tr>
<tr>
<td>F (Cultivar)</td>
<td>4,25**</td>
<td>11,65**</td>
<td>2,28n.s.</td>
<td>0,93n.s.</td>
</tr>
</tbody>
</table>

(*) e (**) Significativo a 5 e 1%, respectivamente
- Tukey - 5%

Acrescente-se, ainda, que ele apresenta teores de proteína compatíveis às exigências de panificação (11,0 a 13,5%, conforme DASH et al. (s/d)).
Os valores do teor de proteína nos grãos de trigo, relatados neste trabalho, mostram a nitida influência da irrigação na diminuição da porcentagem deste assimilado em relação ao tratamento que teve ciclos mais severos de seca. Houve uma queda média de 12,20%, em consequência da irrigação, considerando-se todos os cultivares.
Entretanto, esta diferença foi mais proeminente nos cultivares PAT 72247 (31,57%) e IAC-5 (30,61%), sendo que este apresentou o maior valor em teor protéico nos grãos (19,33%) no tratamento seco, seguido do IAC-21 (19,00%) e do Alondra (18,44%).
Para se conseguir teores de proteína compatíveis e próximos aos exigidos para uma boa panificação, a irrigação é um instrumento eficiente, pois aumentando-se a frequência de aplicação de água, predispõe a elevados potenciais de água no solo, diminui-se a porcentagem de proteínas do glúten. Como este abriga de 78 a 85% da
proteína dos grãos, pode-se, através do teor desta, estimar a quantidade de glúten do trigo. O mesmo raciocínio se aplica ao macarrão e pastas, quando o teor protéico deve ser maior que 12,5%, (DASH et al., 1985).

QUADRO 4 - Média dos teores de umidade, cinzas e fibras nos grãos; peso da matéria seca da parte aérea dos tratamentos irrigados (i) e secos (s) para os nove cultivares

<table>
<thead>
<tr>
<th>Cultivares</th>
<th>Umidade (%)</th>
<th>Cinzas (%)</th>
<th>Fibras (%)</th>
<th>Matéria Seca (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anahuac i</td>
<td>13,24</td>
<td>1,39</td>
<td>2,26</td>
<td>1,15</td>
</tr>
<tr>
<td>Anahuac s</td>
<td>12,71</td>
<td>1,47</td>
<td>2,16</td>
<td>1,03</td>
</tr>
<tr>
<td>Alondra i</td>
<td>12,47</td>
<td>1,62</td>
<td>2,39</td>
<td>2,09</td>
</tr>
<tr>
<td>Alondra s</td>
<td>12,23</td>
<td>1,70</td>
<td>2,16</td>
<td>1,22</td>
</tr>
<tr>
<td>Pat-72247 i</td>
<td>15,50</td>
<td>1,26</td>
<td>2,02</td>
<td>3,10</td>
</tr>
<tr>
<td>Pat72247 s</td>
<td>11,38</td>
<td>1,33</td>
<td>1,77</td>
<td>2,33</td>
</tr>
<tr>
<td>IAC-5 i</td>
<td>12,48</td>
<td>1,37</td>
<td>2,26</td>
<td>1,98</td>
</tr>
<tr>
<td>IAC-5 s</td>
<td>9,90</td>
<td>1,66</td>
<td>1,71</td>
<td>1,65</td>
</tr>
<tr>
<td>IAC-17 i</td>
<td>13,63</td>
<td>1,16</td>
<td>1,80</td>
<td>2,34</td>
</tr>
<tr>
<td>IAC-17 s</td>
<td>11,43</td>
<td>1,30</td>
<td>1,96</td>
<td>2,16</td>
</tr>
<tr>
<td>IAC-18 i</td>
<td>13,10</td>
<td>1,23</td>
<td>2,28</td>
<td>2,21</td>
</tr>
<tr>
<td>IAC-18 s</td>
<td>11,25</td>
<td>1,36</td>
<td>2,26</td>
<td>1,60</td>
</tr>
<tr>
<td>IAC-21 i</td>
<td>12,09</td>
<td>1,50</td>
<td>2,20</td>
<td>2,20</td>
</tr>
<tr>
<td>IAC-21 s</td>
<td>10,31</td>
<td>1,66</td>
<td>2,14</td>
<td>1,60</td>
</tr>
<tr>
<td>IAC-22 i</td>
<td>12,38</td>
<td>1,15</td>
<td>1,62</td>
<td>2,55</td>
</tr>
<tr>
<td>IAC-22 s</td>
<td>12,40</td>
<td>1,29</td>
<td>1,15</td>
<td>1,20</td>
</tr>
<tr>
<td>IAC-24 i</td>
<td>12,19</td>
<td>1,63</td>
<td>2,63</td>
<td>1,80</td>
</tr>
<tr>
<td>IAC-24 s</td>
<td>11,42</td>
<td>1,72</td>
<td>2,73</td>
<td>1,33</td>
</tr>
<tr>
<td>Media i</td>
<td>12,67</td>
<td>1,37</td>
<td>2,16</td>
<td>2,16</td>
</tr>
<tr>
<td>Media s</td>
<td>11,45</td>
<td>1,50</td>
<td>2,00</td>
<td>1,57</td>
</tr>
<tr>
<td>Tratamento (dms)</td>
<td>0,48</td>
<td>0,370</td>
<td>0,663</td>
<td>0,26</td>
</tr>
<tr>
<td>Cultivar (dms)</td>
<td>1,72</td>
<td>0,105</td>
<td>0,187</td>
<td>0,71</td>
</tr>
<tr>
<td>C. V. (conjunta)</td>
<td>5,74%</td>
<td>10,49%</td>
<td>12,84%</td>
<td>23,34%</td>
</tr>
<tr>
<td>F. (Tratamento)</td>
<td>28,11**</td>
<td>5,81*</td>
<td>7,15**</td>
<td>17,76**</td>
</tr>
<tr>
<td>F (Cultivar)</td>
<td>2,95*</td>
<td>6,80**</td>
<td>3,00*</td>
<td>2,76*</td>
</tr>
</tbody>
</table>

Os resultados são concordantes com os obtidos por Kramer, citado por Marin e Velez (1979), que afirma ser o déficit hídrico, durante a maturação dos grãos, um fator de aumento do teor de proteína. Em trabalho realizado anteriormente com o cultivar IAC-5, Klar et al. (1985) também encontraram resultados mostrando a interferência da irrigação nos teores dos vários compostos químicos dos grãos de trigo. Também demonstraram a influência da adubação nitrogenada nos teores protéicos dos grãos daquele cultivar: a medida que a fertilização nitrogenada aumentava, maior o teor de proteína, dentro dos limites compatíveis do genótipo e do ambiente. Há que se convir que investigações devem ser conduzidas, especificando os limites de produtividade e de outros parâmetros, como os teores de proteína nos grãos de trigo quando submetidos a tratamentos de água e nitrogeno interagindo entre si.

Foram avaliados ainda alguns outros compostos como os teores de amido e de óleo (Quadro 3), de umidade, de cinzas e de fibras (Quadro 4).
Segundo Kent (1971), o amido predomina nos grãos de trigo (63 a 67%). Este dado não correspondeu aos obtidos por Klar et al. (1988) que, trabalhando com o cultivar IAC-5, verificaram médias de 56,75% a 59,88%, respectivamente para os tratamentos que receberam e não tiveram adubação nitrogenada em cobertura. No presente trabalho, considerando-se todos os cultivares, o teor de amido variou de 60,00 a 63,85% no tratamento irrigado e de 58,20 a 61,75% no seco.

O tratamento que recebeu irrigação frequentemente produziu substancialmente mais grãos (91,81%), teve 18,01% menos proteína e 8,67% menos cinzas nos grãos, apresentou maiores teores de umidade (10,65%), de fibras (8,0%), de amido (2,9%) nos grãos que o tratamento submetido a ciclos de seca. Considerando-se todos os cultivares, só houve discrepância no que concerne aos teores de óleo nos grãos, pois não houve diferenças estatisticamente significativas, apesar do coeficiente de variação ser relativamente baixo, mostrando a boa precisão do experimento.

Avaliando-se os cultivares envolvidos com respeito ao rendimento de grãos, verifica-se que o cultivar mais indicado às condições estudadas é o IAC-24, pois ocupa o segundo lugar em ambos os tratamentos de irrigação; o mais adaptado à seca é o PAT-72247, considerando-se a produtividade de grãos sob estresse hídrico (1400 kg/ha), perdendo apenas 26% comparando-se ao tratamento irrigado, o contrário ocorreu com o Anahuac, o mais produtivo só se irrigado, pois sob seca produziu apenas 32% dos grãos em relação às plantas com irrigação semanal, portanto, este seria o menos adaptado, usando-se este parâmetro. O PAT-72247 também sobressaiu-se na produção de matéria seca da parte aérea, ocupando o 2º lugar, se irrigado, e o 1º, sob seca, sendo, portanto, indicado para a região onde a irrigação não é uma tecnologia de aplicação comum. Acrescenta-se que o fato de ter boa produção de matéria verde dá-lhe maior competitividade com as ervas daninhas, o contrário do que ocorre com os cultivares de porte baixo, como o Anahuac e o IAC-24.

5.2. Parâmetros Fisiológicos

Conforme se dispôs neste trabalho, procederam-se às medições de dois parâmetros fisiológicos relacionados à água: potencial de água da folha e resistência difusiva ao vapor d'água da folha, com o intuito primeiro de verificar a compatibilidade destes valores com as quedas de produtividade, comparando-se tratamentos irrigados com os submetidos a ciclos de seca em condições de campo.

Analisando-se apenas o potencial de água das folhas (Ψf), medido através da câmera de pressão, durante um dia sem nuvens, desde as 9 até às 17 horas no estádio do florescimento, verificou-se que o tratamento cujas plantas foram submetidas à seca apresentaram potenciais de água na folha mais elevados que aqueles irrigados frequentemente, com exceção do Anahuac, demonstrando a inabilidade deste cultivar de se adaptar à seca. Vale salientar que todas as parcelas foram irrigadas no dia anterior às medições, de modo que em ambos os tratamentos, os potenciais da matriz do solo foram semelhantes e elevados ao amanhecer.

O Quadro 5 mostra os valores máximos e mínimos de Ψf, salientando-se que o cultivar Anahuac teve comportamento oposto ao dos outros. Estes tiveram um padrão esperado e semelhante ao demonstrado pelo cultivar IAC-24, com decréscimos paulatinos ao longo do dia, enquanto o Anahuac não demonstrou um comportamento uniforme para esta variável (Fig. 2). Há que se ressaltar que cada determinação (cada
ponto) foi feita em planta diferente e em pequeno número de indivíduos. Uma repetição do ensaio com maior número de repetições é desejável.

QUADRO 5 - Valores máximos e mínimos do potencial de água nas folhas (ΨF) nos tratamentos (1 e s) e cultivares das 9 às 17h no período reprodutivo com os potenciais de água no solo elevados (Ψs>0,03 Mpa)

<table>
<thead>
<tr>
<th>ΨF</th>
<th>Anah</th>
<th>Alon</th>
<th>PAT</th>
<th>IAC-5</th>
<th>IAC-17</th>
<th>IAC-18</th>
<th>IAC-21</th>
<th>IAC-22</th>
<th>IAC-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn-i</td>
<td>-1,48</td>
<td>-1,65</td>
<td>-1,68</td>
<td>-1,68</td>
<td>-1,87</td>
<td>-1,41</td>
<td>-1,54</td>
<td>-1,66</td>
<td>-1,68</td>
</tr>
<tr>
<td>Mn-s</td>
<td>-1,72</td>
<td>-1,10</td>
<td>-0,98</td>
<td>-1,10</td>
<td>-0,92</td>
<td>-1,02</td>
<td>-1,15</td>
<td>-0,98</td>
<td>-1,05</td>
</tr>
<tr>
<td>Mx-i</td>
<td>-0,93</td>
<td>-1,40</td>
<td>-1,50</td>
<td>-1,45</td>
<td>-1,50</td>
<td>-1,33</td>
<td>-1,33</td>
<td>-1,45</td>
<td>-1,30</td>
</tr>
<tr>
<td>Mx-s</td>
<td>-0,98</td>
<td>-0,93</td>
<td>-0,98</td>
<td>-1,10</td>
<td>-1,20</td>
<td>-1,08</td>
<td>-0,96</td>
<td>-0,98</td>
<td>-0,93</td>
</tr>
</tbody>
</table>

Encontrou-se, no período das 9 às 17 horas, dois tipos de comportamento dos estômatos nos cultivares estudados: o Anahauca exemplifica um primeiro grupo (Fig. 3), que teve os estômatos das plantas do tratamento “seco” fechados a partir das 10h00. As plantas do “irrigado” sempre mantiveram os estômatos abertos. Além do Anahuac, incluem-se neste grupo o IAC-21 e o IAC-5 e o IAC-22 que atingiram valores de resistência difusiva ao vapor d’água de 25 s/cm (considerados fechados), às 11h00, 13h30 e 16h00, respectivamente. Os demais compõem um segundo grupo, representado graficamente pelo cultivar IAC-24 (Fig. 3) que não tiveram os estômatos das plantas de ambos os tratamentos “fechados” no período de medições. Saliente-se que o fechamento dos estômatos faz cair drasticamente a transpiração, mas veda a entrada de gás carbônico, matéria prima necessária à atividade fotossintética.

Reportando-se aos Quadros 3 e 4 pode-se verificar que não se consegue compatibilizar os resultados de produtividade e os outros fatores com a abertura estomática e o potencial de água nas folhas. Por exemplo, o Anahuac e o IAC-21, do primeiro grupo, são dois extremos em rendimento de grãos se irrigados, porém, são parecidos se submetidos a ciclos de seca. Em teores de proteína também não há compatibilização entre eles. O mesmo pode-se inferir em relação aos demais cultivares e fatores estudados.

A carga genética interfere de maneira indelável no comportamento das plantas, sendo manipulada no programa de seleção visando, prioritariamente, os teores de proteína e o rendimento de grãos, no caso do trigo.

A carga genética interfere de maneira indelável no comportamento das plantas, sendo manipulada no programa de seleção visando, prioritariamente, os teores de proteína e o rendimento de grãos, no caso do trigo.

Em plantas que “evitam” a seca (Levitt, 1972), há importantes fatores envolvidos, como a amplitude do sistema radicular, a condutividade hidráulica dentro da planta, além de outros também não avaliados no presente estudo e que são envolvidos num programa de seleção, intencionalmente ou não. Em zonas áricas e semi-áridas, os potenciais de água no solo são obrigatoriamente estimados pela necessidade da irrigação, mas em zonas úmidas e semi-úmidas tal não ocorre, pois dificilmente se avalia os potenciais de água no solo durante o programa de seleção, bem como, alguns outros fatores climáticos.
Figura 02 - Resistência difusiva ao vapor d’água nas folhas para os cultivares Anahuaec e IAC - 24.
Figura 03 - Potenciais de água nas folhas para os tratamentos irrigado e seco dos cultivares IAC-24 e IAC-21.
QUADRO 6 - Valores médios das resistências difusivas ao vapor d'água (rs) nas folhas (s/cm) no período das 9 às 17h para os cultivares e tratamentos (i e s)

<table>
<thead>
<tr>
<th>Cultivares</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaiba</td>
<td>6,5</td>
<td>5,5</td>
<td>9,5</td>
<td>7,0</td>
<td>15,0</td>
<td>15,0</td>
<td>16,5</td>
<td>15,0</td>
<td>18,0</td>
</tr>
<tr>
<td>Anahua</td>
<td>20,0</td>
<td>25,0</td>
<td>25,0</td>
<td>25,0</td>
<td>25,0</td>
<td>25,0</td>
<td>25,0</td>
<td>25,0</td>
<td>25,0</td>
</tr>
<tr>
<td>Alondra</td>
<td>8,5</td>
<td>7,5</td>
<td>5,0</td>
<td>4,0</td>
<td>7,0</td>
<td>7,5</td>
<td>9,5</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td>PAT-72247</td>
<td>5,5</td>
<td>7,5</td>
<td>12,0</td>
<td>10,0</td>
<td>7,5</td>
<td>4,5</td>
<td>4,5</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>PAT-72247</td>
<td>5,5</td>
<td>7,5</td>
<td>12,0</td>
<td>10,0</td>
<td>7,5</td>
<td>4,5</td>
<td>4,5</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>LAC-5</td>
<td>9,0</td>
<td>12,5</td>
<td>10,0</td>
<td>12,0</td>
<td>10,0</td>
<td>18,0</td>
<td>18,0</td>
<td>20,0</td>
<td>25,0</td>
</tr>
<tr>
<td>LAC-5</td>
<td>6,5</td>
<td>9,5</td>
<td>5,0</td>
<td>9,5</td>
<td>10,0</td>
<td>25,0</td>
<td>25,0</td>
<td>25,0</td>
<td>25,0</td>
</tr>
<tr>
<td>LAC-17</td>
<td>4,0</td>
<td>5,5</td>
<td>5,5</td>
<td>7,5</td>
<td>12,0</td>
<td>15,0</td>
<td>16,0</td>
<td>16,0</td>
<td>16,0</td>
</tr>
<tr>
<td>LAC-17</td>
<td>5,5</td>
<td>15,0</td>
<td>11,5</td>
<td>5,5</td>
<td>7,0</td>
<td>5,5</td>
<td>5,0</td>
<td>12,0</td>
<td>12,0</td>
</tr>
<tr>
<td>IAC-18</td>
<td>2,0</td>
<td>3,0</td>
<td>3,0</td>
<td>4,5</td>
<td>7,0</td>
<td>7,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
</tr>
<tr>
<td>IAC-21</td>
<td>9,0</td>
<td>9,5</td>
<td>8,0</td>
<td>10,0</td>
<td>18,0</td>
<td>18,0</td>
<td>25,0</td>
<td>25,0</td>
<td>25,0</td>
</tr>
<tr>
<td>IAC-21</td>
<td>5,5</td>
<td>6,0</td>
<td>25,0</td>
<td>25,0</td>
<td>25,0</td>
<td>25,0</td>
<td>25,0</td>
<td>25,0</td>
<td>25,0</td>
</tr>
<tr>
<td>IAC-22</td>
<td>5,0</td>
<td>4,5</td>
<td>4,5</td>
<td>4,0</td>
<td>10,0</td>
<td>10,0</td>
<td>12,0</td>
<td>18,0</td>
<td>17,0</td>
</tr>
<tr>
<td>IAC-22</td>
<td>5,5</td>
<td>4,0</td>
<td>2,0</td>
<td>2,0</td>
<td>3,0</td>
<td>2,5</td>
<td>25,0</td>
<td>25,0</td>
<td>25,0</td>
</tr>
<tr>
<td>IAC-24</td>
<td>9,0</td>
<td>8,5</td>
<td>9,0</td>
<td>9,5</td>
<td>14,0</td>
<td>13,0</td>
<td>15,5</td>
<td>14,0</td>
<td>15,0</td>
</tr>
<tr>
<td>IAC-24</td>
<td>5,5</td>
<td>9,0</td>
<td>9,0</td>
<td>9,5</td>
<td>5,0</td>
<td>5,0</td>
<td>15,0</td>
<td>11,5</td>
<td>12,0</td>
</tr>
</tbody>
</table>

(*) Cada valor do rs resulta da média de medições em duas plantas diferentes. Cada folha medida era cortada, em seguida, para se medir o potencial de água correspondente.

Também não foram determinados os potenciais críticos de fechamento dos estômata, conforme metodologia relatada por Klar et al., (1978), devido às parcelas não terem atingido extremos de seca em todos os cultivares em ambos os tratamentos, uma emprietada difícil em condições de campo na região de Botucatu, SP, a não ser que se trabalhe em casa de vegetação ou coberturas plásticas no próprio campo, ou por outro artifício qualquer. Assim sendo, se pode inferir, de maneira geral, que os cultivares do primeiro grupo fecharam os estômata a elevados potenciais hídricos das folhas nas parcelas submetidas a ciclos de seca, o que os predispõe à maior resistência para evitar a seca que os demais, mas às custas de menor aproveitamento fotosintético.

A resistência à seca, de acordo com Levitt (1972), envolve três tipos básicos de planta, ou “escapa”, ou “tolera” ou “evita” a seca e é neste último grupo que cabem as plantas de trigo. A maior ou menor capacidade de evitar a seca pode ser estimada por determinações da fisiologia da água a qual, por sua vez, conforme se pode concluir deste trabalho, não define a maior ou menor produtividade de grãos e muitas outras variáveis que compõem o complexo vegetal.

Em caso de plantas comerciais, visa-se, principalmente, a produção de grãos de trigo e seu teor de proteína, via de regra, usando-se toda a tecnologia disponível, inclusive a irrigação. Mas, esta é cara e parcialmente usada no Brasil, daí a necessidade de se conhecer cultivares produtivos mesmo sob seca.

Ensaios com controle ambiental consistente, promovendo ciclos de seca severa e suave devem ser conduzidos para se concretizar tais medições de maneira mais adequada.
6. REFERÊNCIAS BIBLIOGRÁFICAS

